Immunosuppressive activities of recombinant glycosylation-inhibiting factor mutants.
نویسندگان
چکیده
We have shown previously that glycosylation-inhibiting factor (GIF) in culture supernatants of suppressor T cell (Ts) hybridomas had bioactivity, while the same cells contained a substantial quantity of inactive GIF in cytosol. Mass-spectrometric analysis of GIF in the culture supernatant and cytosol of a Ts hybridoma provided direct evidence that GIF protein was posttranslationally modified in the Ts cells, and that the GIF bioactivity is associated with the posttranslationally modified species. Assuming that conformational changes induced by the posttranslational modifications are responsible for generation of bioactivity, we constructed cysteine mutants of human rGIF (rhGIF) in which cysteine at position 57, 60, or 81 was replaced with Ala, and the mutants were expressed in Escherichia coli. Replacement of Cys57 or Cys60 with Ala resulted in generation of bioactivity, while replacement of Cys81 with Ala failed to do so. It was also found that replacement of Cys57 with Ala and carboxymethylation of a sulfhydryl group in Cys60 synergistically increased the GIF bioactivity of the GIF derivatives. A mutated GIF protein, in which Cys57 and Asn106 in the rhGIF were replaced with Ala and Ser, respectively, had immunosuppressive effects on the IgE and IgG1 Ab responses of BDF1 mice to DNP-OVA, while wild-type rhGIF did not. Evidence was obtained that the mutated GIF suppressed Ag priming of Th cells for the Ab responses and proliferative response.
منابع مشابه
The Relationship of Secretion and Activity of Recombinant Factor IX with N-Glycosylation
Background: Human coagulation factor IX (hFIX) is a glycoprotein with two N-glycosylation sites at the activation peptide. Since the activation peptide is removed in mature hFIX, the exact role of N-glycosylation is unclear. To investigate the role of N-glycosylation in the secretion and activity of hFIX, we inhibited N-glycosylation by tunicamycin in the stable Human Embryonic Kidney (HEK)- c...
متن کاملCharacterisation of recombinant glycosylation variants of insulin-like growth factor binding protein-3.
There are three potential N-glycosylation sites in the non-conserved central region of the insulin-like growth factor binding protein-3 (IGFBP-3) sequence (N89AS, N109AS, N172FS). IGFBP-3 exists as two glycoforms which reduce to a single form on enzymatic deglycosylation. To determine the functional significance of the carbohydrate chains, the N-glycosylation sites were mutated singly and in co...
متن کاملMissense mutations near the N-glycosylation site of the A2 domain lead to various intracellular trafficking defects in coagulation factor VIII
Missense mutation is the most common mutation type in hemophilia. However, the majority of missense mutations remain uncharacterized. Here we characterize how hemophilia mutations near the unused N-glycosylation site of the A2 domain (N582) of FVIII affect protein conformation and intracellular trafficking. N582 is located in the middle of a short 310-helical turn (D580-S584), in which most ami...
متن کاملSystematic screening of glycosylation- and trafficking-associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion
BACKGROUND As a strong fermentator, Saccharomyces cerevisiae has the potential to be an excellent host for ethanol production by consolidated bioprocessing. For this purpose, it is necessary to transform cellulose genes into the yeast genome because it contains no cellulose genes. However, heterologous protein expression in S. cerevisiae often suffers from hyper-glycosylation and/or poor secret...
متن کاملRecombinant soluble human tissue factor secreted by Saccharomyces cerevisiae and refolded from Escherichia coli inclusion bodies: glycosylation of mutants, activity and physical characterization.
Tissue factor (TF) is the cell-surface transmembrane receptor that initiates both the extrinsic and intrinsic blood coagulation cascades. The abilities of TF to associate with Factor VIIa and Factor X in a ternary complex and to enable proteolytic activation of Factor X by Factor VIIa reside in the extracellular domain of TF. We describe the expression of the surface domain of TF (truncated TF,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 162 1 شماره
صفحات -
تاریخ انتشار 1999